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Abstract

This study investigated the role of initial molten pool on the numerical simulation to melting process. The critical
time for heat conduction mechanism to control the formation of initial molten pool is estimated ®rst. A realistic
formulation to the initial molten pool is then proposed. The linear stability characteristics of the initial molten pool

when subject to Marangoni ¯ow induced by the perturbations of surface liquid temperature were also analyzed. For
initial pool having a melting time less than the critical time, the subsequent numerical results are independent of the
assumed initial pool. An arbitrarily assumed initial pool could yield erroneous numerical results for melting.

Detailed numerical investigations on the shape evolutions of molten pool during initial stage and the long-term
stage were conducted. E�ects of the heat transfer intensity and the Marangoni number on the melting process were
also investigated. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Melting of solid is commonly found in many practi-

cal applications like crystal growth and laser proces-

sing to metals. Traditional approach, the so-called

Stefan problem, assumed a heat conduction-controlled

process; that is, there exists no motion of liquid in the

molten pool during melting. Till late 1970s the e�ects

of ¯uid ¯ow to the melting process were recognized.

Owing to the incorporation of ¯uid motion numerical

analysis or experimental investigation is necessary to

the detailed information on the dynamics of solid±
liquid interface and temperature ®elds [1±4].

Despite the action of natural convection, when free
liquid surface is present in the melting process, Maran-
goni ¯ow induced by the surface tension gradient

along the interface could also be considered to be sig-
ni®cant. Lin et al. [5] numerically investigated the ¯ow
and temperature ®elds during ice melting, considering
the combined e�ects of heat conduction, natural con-

vection, and the Marangoni ¯ow. These authors noted
that, although heat conduction has played a predomi-
nant role, the Marangoni ¯ow could also a�ect the

melting process, especially on the shape of the solid±
liquid interface. Natural convection has become insig-
ni®cant in their sample calculations.

All numerical simulations should begin with an
initial molten pool. Previous studies arbitrarily
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assume the shape of an initial pool [6±8], or adopt

conduction heat transfer mechanism to construct an

initial molten pool [9,10]. Lin et al. [5] examined

the e�ects of adopting di�erent initial molten pools

to numerical solutions, and noted that di�erent in-

itial molten pool would yield a di�erent calculated

melting process. Restated, an arbitrarily assumed in-

itial molten pool could lead to erroneous numerical

results during solid melting.

A realistic formulation to the initial molten pool is

desired, which is the main theme of this study. In the

subsequent sections we would ®rst list the governing

equations for the melting process and the solution

logic. At the very beginning the melting process should

be controlled by heat conduction alone. Fluid motion

could occur after a molten pool of ®nite thickness was

formed. We then analyzed the linear stability charac-

teristics of a molten pool formed by heat conduction
melting that is subject to Marangoni ¯ow induced by
the perturbations of surface liquid temperature. The
critical time for the melting from purely conductive

process to incorporate ¯uid motion was evaluated. The
initial molten pool could hence be properly formulated
for numerical solution. Finally we examined the val-

idity of the proposed initial molten pool to numerical
solution.

2. Equations and solution

2.1. Governing equations

Fig. 1 schematically depicts the melting process. The
governing equations of the transport process in the

Nomenclature

A area (m2)
B parameter de®ned in Eq. (21a,b)
BC critical B value

Bo bond number
C constant de®ned in Eq. (13b)
Cp speci®c heat (J kgÿ1 Kÿ1)
F perturbed function de®ned in Eqs. (18a)

and (18b)
f perturbed function de®ned in Eq. (18a)

g perturbed function de®ned in Eq. (18b)
g gravitational acceleration (m sÿ2)
k thermal conductivity (W mÿ1 Kÿ1)
L latent heat (J kgÿ3)
m surface heat ¯ux gradient along the liquid

surface (W mÿ3)
Ma Marangoni number

p pressure (Pa)
Pr Prandtl number
Q heat ¯ow rate (W)

Qf heat transfer intensity de®ned by Eqs. (13a)
and (13b)

q00 imposed surface heat ¯ux (W mÿ2)
q heat ¯ux along the interface (W mÿ2)
Ra Rayleigh number
r0 radius of heat source (m)
S interfacial displacement (m)

T temperature (K)
T ' perturbed temperature (K)
Tf melting temperature (K)

Tmean bulk mean temperature (K)
T0B steady-state liquid temperature at the bot-

tom (K)

T0S steady-state liquid temperature at the sur-
face (K)

TS steady-state temperature distribution (K)
DT maximum temperature di�erence (K)
t time (s)

u component of velocity along x-axis (m sÿ1)
~V velocity of liquid (m sÿ1)
v component of velocity along y-axis (m sÿ1)
Xmax maximum interfacial position on x-axis

(m)
x1 computational domain along the x-axis

(m)
Ymax maximum interfacial position on the y-axis

(m)
y1 computational domain along the y-axis (m)

Greek symbols
a thermal di�usivity (m2 sÿ1)
b volume expansion coe�cient (Kÿ1)
G at/d 2

g kinematic viscosity (m2 sÿ1)
l eigenvalue
d thickness of the molten pool (m)
dC critical thickness of the molten pool (m)

y excess temperature (=TÿTf ) (K)
o variable in separation of variables
m viscosity (Pa s)
t function de®ned in Eq. (8a)

r density (kg mÿ3)
x function de®ned in Eq. (8b)
z x/d
Z y/d
s surface tension (N mÿ1)
s0 reference surface tension (N mÿ1)
X function de®ned in Eq. (21a,b)
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molten pool are as follows:

r � ~V � 0 �1�

@ ~V

@ t
� ~V � r ~V � ÿ1

r
rp� gr 2 ~V �2�

@T

@ t
� ~V � rT � ar 2T �3�

Here we considered the two-dimensional case of
Eqs. (1)±(3) where ~V � �u, v� and u and v are the vel-
ocity components along the x- and y-axis, respectively.

A heat ¯ux of q 000 is imposed onto a circular upper
surface of radius r0. Other surfaces assumed to be are
insulated. Furthermore, Marangoni ¯ow is induced by
the surface tension gradient along the free liquid sur-

face. The boundary conditions on the free liquid sur-
face are as follows:

q 000 � ÿk
@T

@y
, at y � 0, 0 < x < r0 �4a�

q 000 � 0, at y � 0, r0 < x < r1 �4b�

t � ÿm @u
@y
�
�

ds
dT

��
@T

@x

�
, at y � 0,

0 < x < x 1

�4c�

The boundary conditions at the solid±liquid inter-

face are as follows:

dQ � rAL
@S

@ t
, and T � Tf �5a,b�

The symmetrical conditions include:

@v

@x
� @v

@x
� u � 0, at x � 0, 0 < y < y1: �6a±c�

Eqs. (1)±(3), together with boundary conditions,

Eqs. (4a), (4b), (4c), (5a,b) and (6a±c), would be com-
pleted if an initial condition is applied. The initial
molten pool was discussed in the next section.

2.2. Heat-conduction controlled process

Let ~V � 0, the melting process becomes heat-con-
duction controlled. Further assume that the molten
pool thickness is much less than its radius, then the

transport process could be taken as one-dimensional.
Using pseudo-steady state approximation, an analytical
solution relating the location of interface and the melt-
ing time are as follows [11]:

t � x
6

�
x� 5� �1� 4x�1=2

�
, �7�

where

x � q�t�d�t�
arL

, �8a�

and

t � q�t�
r 2aL 2

�1
0

q�t�dt: �8b�

Fig. 2 illustrates the x versus t curve, which provides

a unique correlation between the pool thickness and
melting time. Very clearly the heat conduction could
be regarded as the predominant heat transfer mechan-
ism at the beginning stage.

2.3. Numerical solution

Complete solution of Eqs. (1)±(3), (4a), (4b), (4c),
(5a,b) and (6a±c) could be solved numerically if the in-

itial condition was available. The numerical method
proposed by Lin et al. [5] has been adopted herein.
That is, the pseudo-steady state velocity and tempera-
ture ®elds are calculated at small time increments with

the assistance of the CFD package PHOENICS. The
evolution of solid±liquid interface was adjusted at each
time increment. The residuals for the continuity

equation and momentum equations are less than 10ÿ5

and the residuals for the energy equation were less
than 10ÿ2. If the numerical outcome deviates from that

of Eq. (7), heat mechanisms other than heat conduc-
tion should incorporate and play an essential role in
the melting process.Fig. 1. Analytical model.
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3. Critical conditions for conduction-controlled melting

3.1. Evaluation of the critical time

The Marangoni number (Ma ), denoting the ratio
between heat ¯ux induced by Marangoni ¯ow and the
conduction heat ¯ux, could be stated as follows:

Ma �
���� ds
dT

���� Lr0Cpam
�
���� ds
dT

����dDTam
, �9�

where DT is the maximum temperature di�erence

occurring in the system. Meanwhile, the Rayleigh num-
ber (Ra ) controls the intensity of natural convection,
which is de®ned as follows:

Ra � gbDTd3

ga
�10�

The ratio Ra/Ma de®nes the Bond number (Bo ):

Bo �
����� gbrd 2

�ds=dT �

�����: �11�

Notably, if Bo<<1, the role of Marangoni ¯ow
would be much more signi®cant than that of natural
convection.
At the very beginning of melting the heat conduc-

tion should be the only dominant mechanism. In the
subsequent stage other mechanisms like Marangoni
¯ow, might become signi®cant. It becomes essential to

estimate the critical time for the occurrence of tran-
sition from purely conductive process to a combined-
mechanism process.

The procedures are as follows. First, the thickness of
a molten pool (d ) heated from top surface at heat ¯ux
of q 000 by purely conductive process could be estimated

according to Eq. (7) in a very short period of time.
The radius of molten pool is r0, satisfying d<<r0. As a
result, the heating process could be approximately

semi-in®nite. Then the boundary condition considering
Marangoni ¯ow (Eq. (4c)) was imposed upon the free
liquid surface to evaluate the new radius of the molten
pool, r 00. By the equality qr0 � q 0r 00, we could evaluate

the new heat ¯ux at q ', whence evaluating the surface
area of the molten pool aA and the new pool thick-
ness d '. Table 1 lists the parameters adopted herein in

sample calculations. The working material is water.
Since the estimated d values are about 7% of the diam-
eter of the heating area (2r0=5 mm), the semi-in®nite

domain assumption adopted herein has become a
reasonable approximation to solution.
Fig. 2 also illustrates the x versus t curve for the

case with combined e�ects of heat conduction and
Marangoni ¯ow. Notably this curve deviates from that
of pure conduction mechanism at t=0.22, correspond-
ing to a melting time of 5.4 s and a melt thickness of

0.37 mm. Restated, at a melting time exceeding this

Fig. 2. x vs. t curve.

Table 1

Parameters adopted in sample calculations

q 000 1.0E6 W mÿ2

r0 0.005 m

Cp 4180 J kgÿ1 Kÿ1

r 999.9 kg mÿ3

Pr 7.01

k 0.598 W mÿ1 Kÿ1

L 3.35E5 J kgÿ1

b 1.74E4 Kÿ1

Tf 273.15 K

m 1.0E6 kg mÿ1 sÿ1

s 0.147 mN mÿ1
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critical time the process could not be regarded as con-
trolled solely by heat conduction mechanism. This

critical time had been employed in the following sec-
tions to evaluate the e�ects of arbitrarily assumed in-
itial molten pool on the simulations of melting process.

3.2. E�ects of shape of initial pool

As the previous section reveals, the Marangoni ¯ow
would become e�ective in the melting process as t
exceeds 5.4 s. We constructed three initial molten

pools (pools I±III) formed by pure heat conduction
e�ected at t = 2, 5, and 10 s, respectively. According
to the critical time estimated previously, the conduc-

tion-controlled assumption is valid for pool I, but
¯awed for pool III. For pool II, it is just at the tran-
sition stage.

Fig. 3a schematically depicts the molten pool. The
semi-in®nite assumption could be adopted to estimate
the pool thickness. The corresponding d/r0 ratios for

pool I to III are 0.0288, 0.0688, and 0.130, respect-
ively. The temperature distribution in the molten pool
by purely heat conduction mechanism could be
expressed as follows:

y� y, t�
L=Cp

� 1

2
�1ÿ �1� 4x�1=2�

�
y

d
ÿ 1

�
� 1

8
�1ÿ �1

� 4x�1=2� 2
�
y

d
ÿ 1

� 2

�12�

Meanwhile, the velocity in the pool is de®ned as
zero (conduction-controlled). The molten pool of
thickness d, together with the temperature ®eld pre-

dicted by Eq. (12), represents the initial molten pool
for numerical investigation.
In Fig. 3a only the solid under the circular area of

radius r0 is a�ected by the surface heat ¯ux. However,
in reality, the imposed surface heat ¯ux, q000, should not
merely a�ect the solid within r< r0, but also in¯uence

the temperature distributions of solid phase adjacent
to the edge as well the side interfacial shape of the
molten pool. We model the edge as a circular region

for more realistic description as depicted in Fig. 3b.
Notably, by setting ~V � 0, Eqs. (1)±(3) represent a

purely conductive process. Moreover, rp � 0 in Eq.

(2) or ds/dT= 0 in Eq. (4c) could switch o� the natu-
ral convection or the Marangoni ¯ow, respectively.

4. Linear stability analysis of the molten pool

4.1. Linear temperature pro®le

To explore the linear stability characteristics of an
initial molten pool subject to the Marangoni ¯ow

induced by surface liquid temperature ¯uctuations,
consider an in®nitely larger molten liquid of thickness
d with a uniform heat ¯ux of q000 imposing onto the
upper surface. The governing equations of the trans-

port process in the molten pool (Newtonian ¯uid)
neglecting the natural convection e�ect are listed in
Eqs. (1)±(3). The one-dimensional, steady-state, no-

¯ow solutions of Eqs. (1)±(3), (4a), (4b) and (4c) are as
follows:

u � v � 0, �13a�

TS � T0B ÿ Cy �13b�
where C < 0, and q00=kC. Eqs. (13a) and (13b) rep-

resent a pure heat-conduction controlled process at
which @s=@x � 0:
Small temperature perturbation T ' was imposed to

the steady-state solution Eq. (13b). Specify the follow-

ing constraints to the small perturbation T ': @T '/@x$0
on the free liquid surface ( y=d ), and @T '/@x = 0
inside the molten pool (0 < y < d ). The non-zero vel-

ocity components, u and v are the perturbed velocities.
The linearized equations derived from Eqs. (1)±(3)

include:�
@

@ t
ÿ gr 2

�
v � 0, �14a�

�
@

@ t
ÿ ar 2

�
T 0 � Cv: �14b�

Assume that the surface tension changes linearly
with temperature, that is,

Fig. 3. (a) Initial molten pool; (b) modi®ed initial molten pool.
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s � s0 � ds
dT

T 0: �15�

The surface heat ¯ux would also change as follows:

q � q0 �mT 0, �16�

where m � �@q=@T �T�T0S
:

The associated boundary conditions are as follows:

@T 0

@y
� 0, k

@T 0

@y
� mT 0 at y � 0 �17a±b�

ÿm @
2u

@y 2
� ds

dT

@ 2T 0

@x 2
, v � 0 at y � d �17c±d�

Introducing the dimensionless groups (z, Z )=(x/d, y/
d ) and G=at/d 2 into the perturbed equations, and let-
ting

v � a
d
F�z� f �Z�elG, �18a�

and

T 0 � ÿCF�z�g�Z�elG, �18b�

lead to the following equations:�
l� Pr�D 2 ÿ o 2�?D 2 ÿ o 2

�
f � 0, �19a�

�
l� Pr�D 2 ÿ o 2�

�
g � ÿf, �19b�

where D = d/dy and o represents the dimensionless
variable appearing in separation of variables. The cor-
responding boundary equations are as follows:

f �0� � f 00�0� � 0; g�0� � 0

f �1� � 0, f 00�1� � o 2Bg�1�, and

g 0�1� � Xg�1�:
�20a±f�

The parameters in Eq. (20a±e) are de®ned as fol-
lows:

B � �ds=dT �bd
2

am
and X � md

k
: �21a,b�

The neutral stability condition for Eqs. (19a) and

(19b) could be obtained by settling l=0. Restated,

Pr�D 2 ÿ o 2��D 2 ÿ o 2� f � 0, �22a�

Pr�D 2 ÿ o 2�g� f � 0: �22b�
Pearson [12] provided the solutions for Eqs. (22a)

and (22b) together with the boundary conditions Eq.

(20a±e). The following for f and g are as follows:

f � o

�
sinh oZ� o cosh oÿ sinh o

sinh o
Z sinh oZ

ÿ oZ cosh oZ

�
�23a�

g � o

�
3

4o
Z cosh oZ

� o cosh oÿ sinh o
4o sinh o

Z 2 sinh oZ

ÿ 1

4
Z 2 sinh oZ

ÿ o cosh oÿ sinh o
4o 2 sinh o

Z sinh oZ

ÿ 3

4o 2
sinh oZ

�
�23b�

Substitute the solutions of f and g into Eq. (20a±e)
yields the expression of B as follows:

B �
8o�o sinh o� h cosh o��oÿ sinh o cosh o�

�o3 sinh oÿ o 2 cosh o� 2o sinh oÿ sinh 2 o cosh o� :

�24�

The critical value of B could hence be evaluated as

Bc=80. The critical liquid ®lm thickness could be eval-
uated with the assistance of de®nition of B in Eq.
(21a,b) as follows:

dC �
���������������������������������������

80am���ds=dT ��@T=@y���
s

: �25�

Taking @T/@y 1 DT/dC, Eq. (25) could be rearranged
into:

dC � 80am���ds=dT ���DT : �26�

At a liquid ®lm thickness exceeding dC, the molten
pool would become unstable when subjected to surface
temperature perturbation, T '. Substituting the related
parameters into Eq. (26) could estimate the critical

®lm thickness. For the present case, the critical thick-
ness is estimated to be 0.013±0.13 mm at DT = 1±10
K. The numerical solutions provided in the preceding

sections suggests a critical thickness of approximately
0.37 mm. The present linear stability analysis gives a
smaller dC. Such an observation might come from the

inconsistent, linear temperature distribtution proposed
in Eq. (13b). The latter point will be discussed in the
next section.
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4.2. Parabolic temperature pro®le

We herein replaced Eq. (13a) by the parabolic tem-
perature pro®le listed in Eq. (12) to re-derive the stab-

ility criterion based on this pro®le. Since the slopes of

liquid temperature along vertical distance di�er over

the entire liquid ®lm, di�erent critical ®lm thickness
could be evaluated. If the slope is taken at free surface

Fig. 4. (a) Heat ¯uxes along the free liquid surface for pool I; (b) heat ¯uxes along the free liquid surface for pool II; (c) heat ¯uxes

along the free liquid surface for pool III.
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in the calculation, the results is as follows:

dC �
����������������������������������������

80am���ds=dT ����q=Cpar�

s
: �27a�

If, on the other hand, taking the slope at the liquid±

solid interface in calculation, the result is:

dC � 80amCp���ds=2dT �����1ÿ �1� 4x�1=2
��L , �27b�

where x is a function of dC.
Substituting related data in Eqs. (27a) and (27b),

yields the critical ®lm thickness of 0.053 and 0.078
mm, respectively. Consequently, the assumed tempera-

ture distribution does not correspond with the devi-
ation between linear stability analysis and the
numerical solutions. The inherent limitations of linear-

ized analysis should correlate with the deviations.

5. E�ects of initial molten pool

5.1. Initial dynamics of melting

In this section the term `initial dynamics' denotes the
melting process just after several integration time steps

from the initial pool. Restated, the initial melting times
for pools I±III are di�erent, namely slightly exceeding
2, 5, and 10 s, respectively.

Fig. 4a±c compare the heat ¯uxes along the free
liquid surface considering conduction only, conduc-
tion+convection, conduction+Marangoni ¯ow, and

the combined e�ects of the three mechanisms. There
are three points to be noted. First, heat conduction
dominates the processes during the initial phase of

melting. Also, the e�ect of Marangoni ¯ow is much
more signi®cant than that of natural convection, which
correlates with the results of Lin et al. [5]. Second,

comparing Fig. 4a and b, since the molten pool is
rather thin, the action of Marangoni ¯ow mainly
enhances the heat ¯ow close to the rim regime rather
than that at the central regime. A longer conduction

time reduces the heat ¯ux owing to the thicker liquid
pool thickness. Third, the trends depicted in Fig. 4c
di�er from those in Fig. 4a and b, revealing that to

adopt pool III as the initial condition for simulation
may be erroneous.
Fig. 5a±d illustrate the isothermal lines for pool II

just after the start of melting (somewhat exceeding 5
s), considering various combinations of heat transfer
mechanisms. The isothermal lines owing to heat con-

duction alone are all closely parallel to each other
(Fig. 5a). However, the incorporation of Marangoni
¯ow markedly distorts the isothermal lines (Fig. 5c
and d). The isothermal lines at the rim regime become

more crowded, indicating a stronger heat ¯ux at that
regime. Moreover, the high-temperature ¯uid would

Fig. 5. (a) Isothermal lines for pool II considering heat conduction alone; (b) isothermal lines for pool II considering heat conduc-

tion and convection; (c) isothermal lines for pool II considering three kinds of heat transfer mechanisms; (d) isothermal lines for

pool II considering three kinds of heat transfer mechanisms and Marangoni ¯ow.

Fig. 6. (a) Isothermal lines for pool I considering heat con-

duction only; (b) isothermal lines for pool I considering heat

conduction and Marangoni ¯ow.
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`penetrate' into the deeper layers of the ¯uid owing to

the Marangoni ¯ow.

Fig. 6a and b depict the isothermal lines for pool I

just after the start of melting, that is, somewhat

exceeding 2 s. Since such a melting time is less than

the critical time (5.4 s) for the process, Marangoni

¯ow should not have come into play. As clearly

demonstrated in Fig. 6a and b, we note that Maran-

goni ¯ow really does not a�ect the isothermal lines,

thereby having a negligible role in melting.

Fig. 7 demonstrates the isothermal lines for pool III

just after the start of melting, that is, somewhat

exceeding 10 s. Since the time adopted largely exceeds

the critical time, the e�ects of Marangoni ¯ow has

a�ected the temperature distributions over the whole

molten pool. The temperature in the pool has become

more uniform owing to the mixing e�ect induced by

the Marangoni ¯ow.

Fig. 8a±c depict the velocity ®elds for pools I±III

just after the start of their corresponding melting time.

For pool I (Fig. 8a), the ¯uid ¯ow ®eld has not been

well developed. Weak ¯ow exists close to the rim

regime. For pool II (Fig. 8b), the velocity ®eld has

been fully developed, with its maximum velocity ap-

proximately three times to that for pool I. The velocity

®eld becomes much stronger for pool III (Fig. 8c) than

those for pools I and II. Apparently, using pool III as

the initial condition for numerical simulation would

overestimate the role of Marangoni ¯ow.

Fig. 9a±c demonstrate the liquid temperature

along the liquid surface for pools I±III after the

start of melting. For pool I, the presence of Maran-

goni ¯ow lowers the surface temperature when com-
pared with the case considering only heat

conduction. Nevertheless, the basic characteristic of

temperature distribution is not a�ected by the Mar-

angoni ¯ow. For pools II and III, nevertheless, the

surface temperature distributions exhibit di�erent

characteristics when Marangoni ¯ow comes into

play. The temperature at the central regime would
increase with radius, in contradiction to the pure

conduction case. The low temperature of surface

liquid is attributed to the mixing of liquid close to

the central regime with the coming bottom liquid

from the rim region. When the liquid ¯ows outward

along the upper surface, its temperature would
increase owing to the surface heat ¯ux.

In all the cases investigated above, during the initial

stage after the simulation, pools I and II gave identical

results. This correlation agrees with the predicted per-
formance in previous sections that the heat conduction

controlled assumption is valid for initial pools I and

II. Pool III gives erroneous numerical results since the

assumed conduction-controlled period is too long.

Moreover, the maximum velocity induced by natural

Fig. 7. Isothermal lines for pool III considering Marangoni ¯ow.

Fig. 8. (a) Velocity ®elds for pool I; (b) velocity ®elds for pool II; (c) velocity ®elds for pool III.
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convection is two to three orders of magnitude less

than that by Marangoni ¯ow. Marangoni ¯ow a�ects
mainly the ¯uid ¯ow and temperature distributions
near the rim region.

5.2. Long-term dynamics

For demonstrating the long-term e�ects, Fig. 10a
and b illustrate the shapes of solid±liquid interface and
the heat ¯uxes at the interface at t=30 s for the three

initial pools. Notably, the results for pool I and II still
closely correlate with each other, indicating an insignif-
icant role of the initial pool. Pool III assumes a too-

long melting time for a pure conduction-controlled

process. In doing so, at 30 s, the molten pool would

exhibit a smaller radius and a di�erent heat ¯ux distri-

bution at the liquid surface.

Fig. 11a and b illustrate the temperature and vel-

ocity along the free liquid surface for pool II just after

the start of melting and at t = 30 s, respectively. At
short time of melting, where r=1.2r0, the surface tem-

perature increases with increasing radius, reaching a

maximum at the edge of heated area, then decreases

when moving further outward. The corresponding sur-
face velocity, on the other hand, increases in the cen-

tral region, reaching a maximum value at the edge

Fig. 10. (a) Solid±liquid interfacial shape at t = 30 s for the three initial pools; (b) heat ¯uxes at the interface at t = 30 s for the

three initial pools.

Fig. 9. (a) Liquid temperature along free surface for pool I; (b) liquid temperature along free surface for pool II; (c) liquid tempera-

ture along free surface for pool III.
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region, then droping to zero to the solid±liquid inter-

face.
After 30 s, the radius of molten pool reaches 1.8r0.

Both temperature and velocity distributions closely
correspond with each other, and reach their maximum

values at the edge of the heated area.
Fig. 12 depicts the boundaries of molten pool along

x- and y-axis on the basis of initial molten pool II.

Notably, during the initial stage of melting the molten
pool mainly develops along the x-axis, with its maxi-
mum thickness (Ymax) almost invariant. Such an occur-

rence is attributed to the induced ¯ow by Marangoni
¯ow that enhances the heat ¯ux at the rim region. The
melting would hence be e�ective along the radial direc-
tion. In the subsequent stage, heat transfer enhance-

ment regime moves to the symmetrical axis. The
thickness of molten pool hence largely increases after
40 s. The increasing rate of the corresponding radius

of molten pool (Xmax) becomes lesser.
To clearly demonstrating the changes in heat ¯ux at

the solid±liquid interface and liquid temperature along

free liquid surface, Fig. 13a and b depict their distri-
butions at t = 3, 40, and 70 s, respectively, for initial
pool I. Marked di�erences are noted for these trends.

Fig. 14a±c illustrates the corresponding velocity ®elds
of ¯uid. Comparing Figs. 13 and 14 clearly reveal the
e�ects of induced ¯uid ¯ow ®eld on the detailed shape
and the corresponding heat ¯ux/surface temperature

distributions.

5.3. E�ects of heat transfer intensity

In Eq. (8a) the dimensionless group, x, is de®ned as
the measure of heat transfer intensity. Apparently,
according to Eq. (7), greater heat transfer intensity

would yield a thicker molten pool at a prescribed time.
In a similar manner, the dimensionless heat transfer
intensity is de®ned as follows:

Qf � q 000 r0
arL

: �28�

Fig. 15a and b illustrate the e�ects of Qf on the
molten pool shape. The maximum interfacial position

of molten pool along x-axis (Xmax) increases with
increasing Qf , a self-evident result. A reasonable expec-
tation is to have 26% � ���

23
p ÿ 1� increase in Xmax when

Qf is doubled. However, Xmax increases only by 12%

at an expense of two times of Qf at t=12 s.
As Fig. 12 illustrates, Ymax varies only slightly

before t = 40 s. Subsequently, Ymax increases with Qf .

The corresponding increase at t = 96 s is approxi-
mately of 20%, even greater than that of Xmax (12%).
Fig. 15c depicts the magni®cation plot of the Ymax ver-

sus t data, using Qf as a parameter. At short time in-
ternal, the dependence of Qf on Ymax could even
reverse; that is, Ymax increases at a declining rate with

increasing Qf .
The higher Qf yields the early initiation of Maran-

goni ¯ow during melting, thereby having more
enhanced heat transfer at rim region, and the essential

role of heat conduction of liquid close to the central
regime. After the initial stage (exceeding 40 s in the
present sample calculation) the action of Marangoni

¯ow becomes e�ective over the entire pool. The thick-
ness of molten pool hence increases with t and Qf .

5.4. E�ects of Marangoni number

The mean temperature of bulk ¯uid is herein de®ned
as the area mean over all ®nite elements during nu-
merical calculations as follows:

Fig. 11. (a) Temperature and velocity along the free liquid surface for pool II just after the start of melting; (b) temperature and

velocity along the free liquid surface for pool II at t=30 s.

Fig. 12. Boundaries of molten pool along x- and y-axis on the

basis of initial molten pool II.
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Tmean �

�
A

T dAX
Ai,j

: �29�

Fig. 16 illustrates the evolutions of bulk mean tem-
peratures considering pure heat conduction or a com-

bined e�ect with the assistance of Marangoni ¯ow.
Notably, since the presence of Marangoni ¯ow, the
bulk liquid has been more readily mixed thereby yield-

ing a lower bulk temperature when compared the case
with pure heat conduction.
The Marangoni number denotes the ratio between

surface tension driven heat transfer and the conduction

heat transfer. To increase Ma represents enhanced
Marangoni e�ects during melting.
Fig. 17 demonstrates the e�ects of Ma on the evol-

utions of bulk mean temperature. As expected, Ma has
a negligible e�ect on the mean temperature at the in-
itial stage, but reduces Tmean at a long melting time.

6. Conclusions

Numerical investigations of solid±liquid phase
changes require the initial molten pool for initiating
the integration. Such an information is, however, still

largely lacking in literature. This study investigated the
role of initial molten pool on the melting process. The

critical time for heat conduction mechanism to control
the formation of initial molten pool is ®rst analytically

and theoretically estimated. A realistic formulation to
the initial molten pool is proposed. Linear stability
analysis was conducted for the critical ®lm thickness

beyond which Marangoni ¯ow could be initiated.
Three initial pools were employed in simulation. For

initial pool having a melting time less than the critical
time estimated herein, the subsequent numerical results
are identical. Otherwise, erroneous numerical results

could be generated in accordance with the adopted in-
itial molten pool.

Fig. 14. (a) Velocity ®leds at t=2 s (pool I); (b) velocity ®elds at t=40 s (pool I); (c) velocity ®elds at t=70 s (pool I).

Fig. 13. (a) Heat ¯ux at the solid±liquid interface for di�erent time; (b) liquid temperature at free liquid surface for di�erent time

(pool I).
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Initially, the molten pool mainly develops along the
horizontal direction, with its pool thickness being
almost invariant. The induced ¯ow by Marangoni ¯ow

enhances the heat ¯ux at the rim region. In the long-
term dynamics, heat transfer enhancement regime
moves to the symmetrical axis. The thickness of molten
pool hence has been largely increased. Both the heat

transfer intensity and the Marangoni number would
markedly a�ect the temperature distributions, ¯uid
¯ow ®elds, whence the shapes of molten pool at

various stages.
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